当前数字化经济正显现出前所未有的活力。从数字化车间到智能工厂,从工信部标准到产业联盟白皮书,从产业物联网到工业互联网,从大数据到云计算,从人工智能到5G等,全国企业的智能化应用、数字化转型,从来没有像今天这样在中华大地上进行着广泛、深入和持久的讨论。数字化转型已经不再是选择题,而是生存题。
中国经济从高速增长向高质量增长转变的重要过程中,工厂不再是有没有的问题,而是其数字化做到什么程度的问题。数字化孪生不仅承载了改造研发模式、生产方式,提高产品质量、提升生产效率等重要功能,更成为推动制造业转型突围的利器。
工业化控制层概述
工业化控制层包括智能产品/智能生产设备/智能测试设备、数据采集、设备维修、设备维护保养、预测性维护、机器人自动巡检点检、远程监测与控制等。
智能产品/智能生产设备/智能测试设备:集先进制造技术、信息技术和智能技术为一体,具有感知、分析、决策功能的监测、控制与驱动设备及产品。
数据采集:指通过在线的传感器或软件技术对被测对象进行自动采集数字或模拟信号,并传送到DCS、PLC、DNC、SCADA、仪表等系统进行分析、处理。全部的数据采集系统包含了传感器、信号调理、模数转换、通讯接口,以及信号处理设备、信号处理软件等。
设备维修:指为保持、恢复以及提升设备技术状态进行的技术活动。其中包括保持设备良好技术状态的维护、设备劣化或发生故障后恢复其功能而进行的修理,以及提升设备技术状态进行的计划性或紧急性的技术活动。
设备维护保养:是设备维修与保养的结合。为防止设备性能劣化或降低设备失效的概率,按事先规定的计划或相应技术条件的规定进行的技术管理措施。包括事后维护、预防维护、生产维护、预测维护等。
设备预测性维护:基于生产过程、设备运行数据及运行日志文件数据的分析,对设备状态进行有效性评估,并通过预测可能的失效模式,动态、及时地发现设备潜在故障,并形成具有针对性的预警及维护方案。
机器人自动巡检点检:制定对设备进行定点、定位的周期性或临时性的检查方案,通过自行走机器人、无人机等方式,按照预设的路线,以传感器、仪器仪表、视觉、红外线等接触式或非接触式的检测技术,对设备运行状态及环境进行数据、影像采集,并可做出预判。
同时需采用无线传输技术,将以上信息及时传送给管理中心。在特殊工况下比较适用,但是在正常的环境下可以用远程监控来替代。
远程监测与控制:通过有线或无线网络的方式,通过计算机系统对远程的设备进行运行状态的数据采集与视频监控,并可通过网络实现远程对设备的启停、运转速度等运行状态的控制。智能产品/智能生产设备/智能测试设备在开发阶段就需在设备内部建立运行状态的数据采集系统,并具有可连接到专网、宽带、4G、5G等的通讯接口。
IT信息化5层架构的数据打通
1、概述
IT信息化5层架构如下图所示:
第一层(设备基础层):包括工业生产各类设备、传感器、PLC控制、传输网络以及物联网网关等,是工厂的最底层加工单元。
主要完成数据的采集、转换、收集、处理和计算,以及必要的控制。通过统一的接口(如OPCUA),按照传输协议(比如工业以太网传输协议)连接到工业监测、控制、执行系统中。
第二层(自动化控制层):设备监测控制系统,比如HMI、DNC、SCADA等。HMI称作人机接口(也叫人机界面),是系统和用户之间进行交互和信息交换的媒介,实现信息的内部形式与人类可以接受的形式之间的转换。
SCADA是数据采集与监测控制系统,是以计算机为基础的DCS与电力自动化监控系统。可以对现场的运行设备组网进行监测和控制,以实现数据采集、设备控制、测量、参数调节以及各类信号报警等功能。
第三层(生产执行层):由MES、MOM等满足不同工业需求的生产执行系统构成,负责拿到任务并进行任务的分配与过程执行。
在这个过程中,需要通过网络和各类接口,向控制层系统或基础层设备请求所需要的各种参数、变量、状态和数据,反向控制指令的原理一样。其技术基础是与现场设备进行通讯,实现数据的自动化采集甚至智能采集以及反向控制。
第四层(业务管理层):包括PLM、ERP、SCM、CRM等上层系统。其中,PLM负责产品从研发到报废的“全生命周期管理”,ERP负责企业内部资源的配置和协调,SCM负责企业资源和外部的对接,CRM负责促进企业和消费者的沟通。
第五层(商业决策层):经过层层数据的采集、处理、存储、分析、利用,最终能够为商业决策层(BI商务智能)提供精益的数据基础。商业决策层将企业中现有的数据进行有效整合,快速准确地提出决策依据,帮助企业做出明智的业务经营决策。
通过以上IT信息化5层架构的打通,能够打破数据孤岛,使得智能产品从设计、制造、安装、运维到服务的所有环节都被打通。PLM的设计数据直接进入ERP系统,ERP系统立即调配工厂资源,如需外界供货则由SCM系统自动调配。
而借助于CRM系统,整个生产过程可以和客户保持实时沟通。MES系统在其中起到了信息化和工业自动化的桥梁作用。这一切的基础是实现软硬件的结合,用智能信息化系统结合智能产品/智能生产设备/智能测试设备,最终实现整个制造工厂到服务现场的智能化。
2、数据采集
数据采集作为产品生产和服务运维过程中的信息收集手段,是连接底层工业控制系统与上层信息化系统的桥梁,为企业信息化提供有效的基础数据,比如工艺参数、设备数据、质量数据等。数据采集将管理同生产紧密结合,形成“信息源于生产,运维服务数据又最终指导、优化生产”的有效闭环。
数据采集类型
工业数据主要来源于机器设备数据、工业信息化数据和产业链相关数据。不仅要涵盖基础数据,还要逐步包括用户行为数据、社交关系数据、用户意见和反馈数据、设备和传感器采集的周期性数据等各类数据。目前主要包括以下几种数据采集类型:
(1)海量的Key-Value数据:在传感器技术飞速发展的今天,光电、热敏、气敏、力敏、磁敏、声敏、湿敏等不同类别的工业传感器在工业现场得到了大量应用,而且很多时候机器设备的数据大概要到毫秒的精度才能分析海量的工业数据。因此,这部分数据的特点是每条数据内容很少,但是频率极高。
(2)文档数据:包括工程图纸、仿真数据、设计CAD图纸等,还有大量的传统工程文档。
(3)信息化数据:是由工业信息系统产生的数据,一般是通过数据库形式存储的,这部分数据是最好采集的。
(4)接口数据:由已经建成的工业自动化或信息系统提供的接口类型数据,包括txt格式、JSON格式、XML格式等。
(5)视频数据:工业现场的视频监控设备产生的大量视频数据。
(6)图像数据:工业现场各类图像设备拍摄的图片,例如巡检人员用手持设备拍摄的,或机器人自动拍摄的设备、环境信息图片等。
(7)音频数据:语音及声音信息。例如操作员的通话、设备运转的音量等。
(8)其他数据:例如遥感遥测信息、三维信息等。
数据采集方法
(1)传感器
传感器是一种检测装置,能感受到被测量的信息,并将信息按一定规律转换成电信号或其他所需形式的信息输出,以满足数据的传输、处理、存储、显示和控制等要求。生产车间中存在许多传感节点,24小时监控着整个生产过程,当发现异常时,迅速反馈至上位机,是数据采集的感官接收系统,属于数据采集的底层环节。
(2)RFID技术
RFID射频识别技术是一种非接触式的自动识别技术,通过射频信号自动识别目标对象、获取数据信息并交换数据。RFID技术可识别高速运动物体并可同时识别多个标签,操作快捷方便。
在工作时,RFID读写器通过天线发送出一定频率的脉冲信号,当RFID标签进入磁场时,凭借感应电流所获得的能量发送出存储在芯片中的产品信息,或者主动发送某一频率的信号。阅读器对接收的信号进行解码,然后送到后台主系统进行相关处理。主系统根据逻辑运算判断该卡的合法性,针对不同的设定做出相应的处理和控制,发出指令信号控制执行动作。
数据采集难点
(1)数据量巨大
如果单纯是将数据采集到,可能还比较好完成。但是,因为必须要考虑数据的规范与清洗,所以在存储之前需要对海量的数据进行处理,从技术上又提高了难度。
(2)工业数据的协议不标准
互联网数据采集一般都是常见的HTTP等协议,但在工业领域,有ModBus、OPC、CAN、ControlNet、DeviceNet、Profibus、Zigbee等各类型工业协议,而且各个自动化设备生产及集成商还会自己开发各种私有的工业协议,导致在工业协议的互联互通上,出现了极大的难度。很多企业在工业现场实施综合自动化等项目时,遇到的最大问题就是面对众多的工业协议,无法及时有效的进行解析和采集。
(3)视频传输所需通讯带宽巨大
随着云计算技术的普及、公有云的兴起,大数据需要大量的计算资源和存储资源,因此工业数据逐步迁移到公有云已经是大势所趋了。现在一个工业企业可能会有几十路视频,成规模的企业会有上百路视频,如此大量的视频文件如何通过互联网顺畅的传输到云端,也是需要面临的巨大挑战。
(4)对原有系统的采集难度大
在实施大数据项目时,数据采集往往不仅仅是针对传感器或者PLC,而是采集已经部署完成的自动化系统的上位机数据。这些自动化系统在部署时,厂商水平参差不齐,大部分系统是没有数据接口的,文档也大量缺失,大量的现场系统没有点表等基础设置数据,使得对这部分数据采集的难度极大。
(5)安全性考虑不足
原先的工业系统都是运行在局域网中,安全问题不是突出考虑的重点。一旦需要通过云端调度工业之中最为核心的生产能力,又没有对安全的充分考虑,造成的损失是难以弥补的。
3、数据展示
数据采集、处理之后,需要对采集数据进行展示,例如智能产品/智能生产设备/智能测试设备运行状态报告,可以显示出当前每台设备的运行状态,是否空闲、空闲时间多少、是否加工中、加工时间多少、状态设置如何、正在运行中或是出了故障等。
数据展示需要对采集到的项目数据提供多种报表的展示,例如设备综合利用率OEE报表,能够准确清楚地分析出设备效率如何,在生产的哪个环节有多少损失,以及可以进行哪些改善工作。企业通过对工厂设备状态的实时了解,可以实现即时、高效、准确的精细化设备管理。
智能产品/智能生产设备/智能测试
设备数据的聚合清洗和优化
1、概述
要实现设备的智慧管理、智慧数据处理,第一步需要拿到智能产品/智能生产设备/智能测试设备数据。除了智能产品/智能生产设备/智能测试设备数据采集,还要对智能产品/智能生产设备/智能测试设备数据进行聚合、清洗和优化等。
数据聚合:是数据处理的最后一步,通常指的是转换数据,是每一个数组生成一个单一的数值,比如sum()、mean()和count()等。首先确保采集数据结构的完整性,然后借助聚合功能,使用规范格式(比如XML)在任何格式之间按需转换。
数据清洗:清洗、匹配数据并对所有异常进行处理,以确保数据的规范化、高质量。数据采集是一个大集合,难免会出现一些错误或有冲突的不想要的“脏数据”。需要按照一定的规则把“脏数据”“洗掉”,过滤掉那些不符合要求的、不完整的、错误的、重复的数据。
数据优化:要获得高信息含量的、有用的数据,除了要进行数据聚合及清洗,还要对数据进行优化,根据数据分析优化模型,对数据进行分析重组。
2、数据分析
在设备自动化过程中,产生了大量的数据,这些数据所蕴含的信息和价值并没有被充分挖掘,数据分析的目的就是弄清楚智能产品/智能生产设备/智能测试设备数据背后的含义。
从工业物联网角度来说,数据分析可以从以下两个方面来看:
(1)分析数据,形成分析结果,这是数据分析必须要做的一个基础事情。
(2)合理应用分析结果。分析的目的是把分析的结果应用起来,实现安全生产+节能减排+提高效率。这件事情是一件实实在在的事情,如果只是吹捧概念,无法真正落地,是很难做到数据的完美应用的。
3、边缘计算
边缘计算是一种分散式运算架构,将应用程序、数据资料与服务的运算,由网络中心节点,移往网络逻辑上的边缘节点来处理。
它是将原本完全由中心节点处理的大型服务加以分解,切割成更小更容易管理的部分,分散到边缘节点去处理。如果把云端比作大脑,那么边缘计算就是神经末梢,对简单的刺激进行自处理并将处理的特征信息反馈给云端大脑。
随着物联网的发展,智能产品/智能生产设备/智能测试设备所产生的数据将越来越多,这些大规模数据需要放到云端进行处理。放到云端,就需要无穷无尽的传输带宽和数据处理能力,“云”难免不堪重负,因此需要边缘计算来分担云计算的压力。
所以,在工业现场的边缘侧进行数据采集、处理及传输的边缘计算网关承担着不可小觑的重任。后期边缘计算与云平台再进行融会贯通,实现“边云一体化”,利用大数据分析赋能生产,能够发挥工业数据的真正价值。
边缘计算能够提供随处可得的不间断的互联网接入、全面的安全性和无线服务等,为真正意义上的智能产品/智能生产设备/智能测试设备信息化、智能化提供数据的高速通道。
其强劲的边缘计算能力,在物联网边缘节点实现数据优化、实时响应、敏捷连接、智能分析,显著减少现场与中心端的数据流量,并避免云端运算能力遇到瓶颈。能够优化网络架构,更安全、更快响应,同时更智能化地实现现场业务。
另外,边缘计算具有多种工业协议,比如ModbusTCP、ModbusRTU、OPCUA、PROFINET、PROFIBUS-DP、EtherCAT、EhterNET/IP、CC-LINK、PPI等,还具有完善的网络功能,支持QoS功能、VLAN功能、虚拟IP映射功能、Sniffer功能等。
4、BI商业决策
BI概述
BI即商业智能,泛指用于业务分析的技术和工具,通过获取、处理原始数据,将其转化为有价值的信息来指导商业行动。BI能够为企业的商业运营提供基于历史、当下和未来的分析视角,涵盖了从运营到战略的每个层面。
BI可以为企业提供外部、内部两方面的信息分析。外部信息包括竞争对手、供应商、原材料、需求等信息,内部信息包括产品和服务的成本、质量等。
BI能帮助企业了解最新趋势、抓住新的市场机会、发现潜在的威胁,从而更好地优化资源、改进财务绩效、引导产品潮流、提高服务水平,提升企业的竞争优势。
从行业发展来看,BI的发展是以较为完善的企业信息系统和稳定的业务系统为基础的,其未来的应用是与企业信息化的基础状况密切相关的。商业智能等于商业加智能,需要积累大量的设备、生产、业务数据,借助于数据仓库、数据建模、数据分析、数据挖掘等技术,结合商业知识建立分析模型,然后进行统计分析、深层挖掘,以可视化交互的方式进行展现。
BI系统的组成
(1)业务系统
不同于业务管理类的信息系统,BI系统对企业信息化本身提出了更高的要求。随着业务的推进,企业信息系统会产生大量的数据,BI系统通过定时、实时的方式从各个业务系统中获取最新的业务数据,然后进行规范加工、计算汇总,最后展示给各级用户。
(2)企业数据模型
BI系统中最有价值的部分是企业数据模型。数据模型是数据仓库落地的业务基础,数据仓库中按业务主题存储着企业的经营数据,是商业智能系统的核心组件。
(3)应用层
BI系统通过规范的数据管理,可以为用户提供多渠道、多种形式的数据服务:
综合报表:为企业各级人员提供传统、复杂的统计报表,大大减少各级数据分析人员的日常制表工作。
管理驾驶舱:为公司高层管理人员提供全面的、可视化的关键绩效指标分析工具,通过图形化的经营战略地图、KPI仪表盘、各种经营指标的变化趋势等,为不同的管理人员提供个性化的可视化展示。
监控和预警:实时监控企业各种关键绩效指标,并基于管理规则和业务计划,对超出正常范围的指标和计划延迟事项提供邮件、短信等多种提醒方式,保证关键问题能够及时获得管理层及相关人员的
转载请注明地址:http://www.abmjc.com/zcmbyf/4274.html