光伏组件封装材料及配件
通过合适的材料与相应的工艺,将相同面积且具有一致电学参数的多片晶体硅太阳电池通过互连条焊接在一起,再通过真空层压工艺及相关配件组合进行封装,最终就可以构成一个类似三明治结构的平板形的光伏组件。光伏组件中的太阳电池将太阳辐射直接转换为直流电,而封装材料与其他配件则起保护、绝缘、电学连接及力学支撑等作用。封装材料与辅助配件主要有焊带、封装黏结材料、盖板、背板、边框、接线盒及连接电缆等。封装材料的选择与光伏组件的应用场所有密切关系,因此通常需要根据光伏组件实际应用场合选取合适的封装材料与封装工艺。光伏组件要经受长达几十年的户外各种气候条件的考验,安装场地环境又复杂多样,这对组件封装材料和工艺都提出了很高的要求。本章主要介绍组件生产过程中涉及的材料、配件的性能指标以及相关的检验方法等。
1.涂锡焊带
晶体硅太阳电池之间连接用的焊带一般采用一种镀锡的铜条,这种铜条根据不同使用功能分为互连条和汇流条,统称为涂锡焊带。互连条主要用于单片电池之间的连接,汇流条则主要用于电池串之间的相互连接和接线盒内部电路的连接。焊带一般都是以纯度大于99.9%的铜为基材,表面镀一层10~25μm的SnPb(锌、铅)合金,以保证良好的焊接性能。
焊带根据铜基材不同可分为纯铜(99.9%)、无氧铜(99.95%)焊带;根据涂层不同可分为锡铅焊带(60%Sn,40%Pb)、含铅含银涂锡焊带(62%Sn,36%Pb,2%Ag)、无铅环保型涂锡焊带(96.5%Sn,3.5%Ag)、纯锡焊带等;根据屈服强度又可分为普通型、软型、超软型等。
因为晶体硅太阳电池的输出电流较大,焊带的导电性能对组件的输出功率有很大影响,所以光伏焊带大多采用99.95%以上的无氧铜,以达到最小的电阻率,降低串联电阻带来的功率损失。焊带还需要有优良的焊接性能,在焊接过程中不但要保证焊接牢靠,不出现虚焊或过焊现象,还要最大限度避免电池翘曲和破损,因此一般采用熔点较低的Sn60%Pb40%合金作为镀层。
如果采用含银镀层,焊带熔点还会降低5℃,更有利于提高焊接性能,但是由于成本较高,通常不被采用。降低焊带的屈服强度可以提高组件焊接和连接的可靠性,特别是有利于热循环中的应力释放,但这对焊带制作工艺提出了较高的要求,目前行业里一般将焊带的屈服强度控制在75MPa以下。早期的焊带屈服强度过高,造成抗拉强度和延伸率太低,导致在实际使用中由焊带问题引起的组件故障较多。表3-1列出了通用焊带的主要技术指标。
焊带的宽度和厚度要根据组件的设计来选择或根据特定需求来定制。通常互连条的宽度主要根据电池的主栅线宽度来确定,宽度范围为1.5~0.9mm,例如3根主栅线电池一般采用1.5mm宽焊带,5根主栅线电池采用0.9mm宽焊带。基材厚度一般为0.1~0,2mm,镀层厚度为0.mm。汇流条则根据组件的电流载荷需求确定,基材厚度一般为0.1~0.25mm,宽度为4~8mm。目前多主栅组件的发展给焊带加工带来了新的挑战,因为多主栅需要用到圆焊带,一般要求直径为0.3~0.5mm。
焊带对光伏组件的功率和使用寿命有重要影响。目前各焊带厂商及组件厂家从电学、光学等多方面进行优化,设计出各种具有低电阻率的不同焊接方式、不同表面涂层、不同表面结构的焊带,力求减少因焊带引起的组件电学损耗,同时进一步提高组件对光学的利用率和输出功率,例如可利用压延等手段在焊带表面形成陷光结构,见图3-1(a),或者在焊带表面贴敷具有陷光结构的膜层等。对于表面镀层技术,采用普通热镀工艺的焊带,其表面的镀层是不均匀的,见图3-1(b),而通过电镀方式在表面形成均匀致密的镀层,能在一定程度上增加基材厚度,从而降低电阻;也可以采用特殊工艺在表面形成有陷光结构的不平整表面的镀层。
新型的低温焊接工艺是未来的一个重要发展方向。传统焊带需要在高温下才能形成合金,完成焊接过程,但高温会导致电池翘曲,引起隐裂甚至破片,影响组件生产成品率,并可能影响组件功率输出,比如异质结电池(HIT),其结构中含有的非晶层对温度非常敏感,温度过高会引起电池效率降低。因此,传统的涂锡焊带还需要在环保、低温、光学、电学、力学等方面进一步改善,以实现组件的高功率、长寿命。
2.助焊剂
当涂锡铜带暴露于空气中时,表面会氧化产生氧化物,影响焊接效果,因此焊带使用前需要去除氧化物,同时保证焊带表面不会再次形成氧化。行业一般采用液态免洗助焊剂,其主要成分为有机溶剂、松香树脂及其衍生物、合成树脂表面活性剂、有机酸活化剂、防腐蚀剂、助溶剂、成膜剂等,主要作用是去除氧化物和降低被焊接材质表面张力,并在短时间内扼制氧化反应,从而提高焊带的焊接性能。助焊剂是易燃易爆危险品,有刺激性气味,一般要求保存在防爆柜中。焊带使用之前采用助焊剂进行浸泡,在浸泡和晾干焊带时要注意保持通风,浸泡好的焊带需及时用完,以防止助焊剂全部挥发后焊带表面再次氧化导致虚焊。常用助焊剂的主要技术指标见表3-2。
3.盖板材料
盖板材料铺设在光伏组件的最上层,具有高透光、防水防潮及耐紫外的性能,有一些组件的盖板材料还具有一定的自清洁性能。在选择盖板材料的时候需要考虑两点∶一是盖板材料与黏结材料的折射率匹配,以保证有更多的光照射到太阳电池表面,提高组件效率;二是强度与稳定性,能够长期保护太阳能电池。最常见的盖板材料为超白压花钢化玻璃,一些特殊场合也使用有机玻璃或其他柔性透明材料。
(1)超白压花钢化玻璃
玻璃是最稳定的无机材料之一,能够在户外使用几十年而不改变其性能,具有很高的机械强度,因此成为光伏组件盖板材料的首选。超白压花钢化玻璃又称低铁压花钢化玻璃,因含铁量低和透光率高而得名,其中压花是指采用压延工艺,在玻璃表面形成一定的花纹,以增加光线的透射率。超白玻璃的含铁量≤×10~°。
图3-2所示为3.2mm超白钢化玻璃与普通玻璃光谱透光率比较,在~mm的波长范围内,超白玻璃的透光率平均在91.7%,但是非超白玻璃平均只有87%。为了进一步提高玻璃的透光率,现在行业普遍采用减反射膜玻璃,通过减反膜进一步减少玻璃对光线的反射,透光率可提高1.5%以上,从而可以提升组件输出功率。钢化玻璃是先将原片玻璃切割成光伏组件所要求的尺寸,然后将其加热到玻璃软化点温度附近,再进行快速均匀冷却而得到。钢化处理后玻璃表面会形成均匀的压应力,而内部则形成张应力,从而可使玻璃的力学性能得到大幅度提高。
超白钢化玻璃一般采用压花工艺生产原片,称为布纹压花玻璃。压花玻璃是将玻璃熔融后用上下滚轮压延而成,通过上下滚轮的花纹来控制玻璃前后面的花纹,通常和空气接触的那一面为布纹面,和EVA接触的面为绒面。通过绒面形状的优化可以提高组件的功率输出。通常照射到太阳电池表面的光线一部分被吸收,另一部分被反射回去,由于EVA与玻璃绒面之间的内反射作用,电池反射的光线会再次被反射到太阳电池表面,这样就可以增加到达电池的有效光线量,从而提高组件的输出电流和输出功率。绒面形状总体可以分为四角形和六角形两大类型。
常规采用的玻璃厚度为3.2mm或4mm,随着对组件轻质化的要求越来越高,市场上开始有2.5mm甚至更薄的玻璃供应。超白低铁压花钢化玻璃的主要技术指标见表3-3。
(2)镀膜玻璃
玻璃材料及结构直接决定了有多少光线能够入射到太阳电池表面,从而影响光伏组件的发电量,因此如何提高玻璃的透光率和减少灰尘对玻璃的遮挡成为行业
转载请注明地址:http://www.abmjc.com/zcmbhl/1180.html