在电动汽车当中,40%的成本来自电池,后者就像是为电动汽车提供“泵血功能”的心脏。而电池的性能和寿命则是衡量电动汽车性能的重要指标。如何掌握这些指标并保证每颗电池的运行状态达到最优?
全靠电池管理系统BMS(batterymanagementsystem),它在电池运作系统中充当“电池保姆”的角色。它处理的信号足够丰富,包括:电芯、碰撞、CAN、充电、水泵、高压、绝缘等等。
一次过放电就会造成电池的永久性损坏,极端情况下锂电池过热或者过充电会导致热失控、电池破裂甚至爆炸。所以,通过BMS能准确量测电池组使用状况,保护电池不至于过度充放电,平衡电池组中每一颗电池的电量,以及分析计算电池组的电量并转换为可理解的续航力信息,确保动力电池安全运作。
BMS中的主要芯片包括哪些?
AFE模块:实现电池信息采集、状态监测等功能
AFE(模拟前端,AnalogFrontEndFrontEnd)是包含传感器接口、模拟信号调理(Conditioning,包括阻抗变换、程控增益放大、滤波和极性转换等)电路、模拟多路开关、采样保持器、ADC、数据缓存以及控制逻辑等部件的存以及控制逻辑等部件的集成组件。有些AFE还带有MCU、DAC和多种驱动电路和多种驱动电路。
电池均衡模块:提升电池续航时间和循环寿命
电池不均衡会影响电池续航时间和电池循环寿命。电池不均衡表现为多节电池串联时各节电池电压不相等,尤其在充电末端和放电末端时表现明显。当满充容量不同的电池配组串联在一起时,串联充电电流相同,但满充容量小的那个电池会先充到更高电压,从而表现为各节电池电压不相等。即使满充容量相同,但SOC不同的电池配组串联在一起时,SOC高的那节电池的电压偏高,从而表现为各节电池电压不相等。即使满充容量相同、SOC相同,但各节电池的内阻R不同,则在充放电时IR压差不同,也会导致电池端电压不同。此外,一些外部因素(比如电池组局部受温或个体电池之间热不均衡)也会导致个体电池老化速率不同从而内阻不均衡。最终都可能表现为各节电池电压不相等。
均衡电路主要包括主动均衡、被动均衡。主动均衡是把电量最多的那节电芯多出来的电量转移给电量最少的那节电芯,或者转移给整串电池,实现能量回收。被动均衡是把电量最多的那节电芯多出来的电量通过电阻发热消耗掉。
计算单元(MCU等):实现控制、计算等功能
MCU作为计算平台,需要满足AEC-Q、ISO等认证。以ADI48V油电混合BMS系统为例,MCU起到继电器控制、SOC/SOH估计、均衡控制、电芯电压、电流、温度数据收集、数据存储等作用。相较于消费级和工业级MCU,车规级MCU行业壁垒更高。车规级半导体对产品的可靠性、一致性、安全性、稳定性和长效性要求较高,研发难度较大:汽车行驶的外部温差较大,对芯片的宽温控制性能有较高要求;在产品寿命方面,整车设计寿命通常在15年及以上,远高于消费电子产品的寿命需求;在失效率方面,整车厂对车规级半导体的要求通常是零失效;在安全性方面,汽车电子的高功能安全标准给复杂性日益增长的电子系统量产化提供了足够的安全保障。车规级半导体的供应周期需要覆盖整车的全生命周期,供应需要可靠、一致且稳定,对企业供应链配臵和管理方面提出了较高要求。
隔离电路:实现高低压模块间电气隔离
隔离器件实现高低压模块间的电气隔离,技术路线包括光耦隔离和数字隔离。隔离器件是可以将输入信号进行转换并输出,以实现输入、输出两端电气隔离的一种安规器件。电气隔离能够保证强电电路和弱电电路之间信号传输的安全性,如果没有进行电气隔离,一旦发生故障,强电电路的电流将直接流到弱电电路,对电路及设备造成损害。另外,电气隔离去除了两个电路之间的接地环路,可以阻断共模、浪涌等干扰信号的传播,让电子系统具有更高的安全性和可靠性。高电压(强电)和低电压(弱电)之间信号传输的设备大都需要进行电气隔离并通过安规认证。广泛应用于信息通讯、电力电表、工业控制、电动汽车等各个领域。
BMS芯片主要厂商在欧美
在BMS芯片中,可供选择的AFE并不多。我们能接触到的AFE内部结构大同小异,不同点在于采样通道数、内部ADC的数量、类型和架构。
AFE的主要供应商有ADI、TI、ST、松下、NXP和瑞萨。其中ADI的产品线主要来自收购的凌力尔特和美信(年,ADI收购凌力尔特后,和通用汽车等整车企业合作研发无线BMS,推出了无线BMS系统与平台,在电池生产至回收的全周期内检测电池数据并分析,使动力电池价值最大化),瑞萨的产品主要来自收购来的Intersil。AFE产品的供应商主要是国外的企业,国内目前没看到有哪家厂商提供AFE芯片。
AFE主要供应商及产品型号
从MCU方面来看,供应商主要有TI、ST、NXP、英飞凌、瑞萨等。目前国内也有很多MCU厂商都在积极布局车规级产品,如中颖电子、兆易创新、北京君正、芯海科技、国民技术、紫光国微、纳思达、乐鑫科技、博通集成、复旦微电、上海贝岭、晶丰明源等等。
MCU主要供应商及产品型号
在ADC方面,目前主要的供应商有TI、ADI、ST、瑞萨等,多数是美国厂商,ST虽然有,但产品系列比较少。国内主要有上海贝岭、思瑞浦、圣邦股份、芯海科技。
在数字隔离方面,主要用在高低压之间的数字通信,比如在BMS主控板上的高压采样与MCU之间的SPI通信,以及采样板AFE与MCU的SPI通信。主要供应商有ADI、TI、SiliconLabs等。当然,除了使用数字隔离器外,也可以使用光耦、或者变压器隔离方案。
比较有代表性的BMS芯片
TI高精度电池监控、平衡、保护器
汽车电气化呈不可逆转之势快速发展,BMS系统成为首要核心问题。TI在电动汽车BMS领域颇有建树,先后发布了符合ASILD标准的有线BMS和无线BMS解决方案,领先业界。
BQ-Q1电路拓扑图源:TI
BQ-Q1是一款可应用与混合动力、纯电动汽车BMS模块高精度的电池监控器、平衡器和保护器,可对电池温度实时监控,为避免过热的情况出现,能自主进行暂停和启动操作。该芯片工作电压为12V,可在μS内迅速为14块电池进行高精度地电压监测。
BQ-Q1芯片内部集成了前端滤波器和后置ADC低通滤波器。前端滤波器是为了降低成本,能够在电池输入电路上使用简单、低压的差分RC滤波器。ADC低通滤波器是为了对滤波后的直流电压进行监测,方便计算出电池的电荷状态。在该芯片可用于外部热敏电阻的测量BQ-Q1在通信方面可与BQ器件相连或直接通过UART接口与MCU完成通信。在通信线线路异常的情况下,MCU可以通过隔离式差分菊花链与电池组直接通信。STLE电池监测保护芯片
意法半导体(ST)引领半导体市场多年,芯片应用横跨多个领域,也成为了汽车芯片的主要供应商。在汽车领域,为满足市场及设计需求,推出了LE电池监测保护芯片,旨在解决全球包括中国电动汽车共同面临的电池管理系统设计难题。新产品采用一个独特的架构,能够测量4到14个串联电池单体,样本信号之间解除同步没有任何延迟,测试结果证明,虽然可以菊链式连接31个LE,但是整链延迟仍然不到4s。
LE的电压测量准确度非常高,最大误差为±2mV,同时还能测量电流,了解每个电池单体的实际容量。此外,该产品的架构确保每个电池单体都有专门的资源用于处理芯片监测到的电数据,而市面同类产品通常在电池单体之间共享数据处理资源。通过为每个单体提供专用处理资源,我们可以提供同步读数,并可以避免因解除同步而引起的延迟。在菊链式网络结构内,LE还可以通过串行总线通信,带宽达到2.66Mbps,而业内带宽大多数都徘徊在1Mbps左右。因此,读取和处理个电池单体需要4毫秒到16毫秒。
EVAL-LE-MCU
随着电动汽车变得越便宜,成本制约因素变得越重要。功能强大但价格太高的芯片会失去大部分吸引力。与众不同的是,LE提供丰富的功能,但是没有增加裸片尺寸,继续保持成本效益。此外,传统的BMS芯片要求每个电池单体必须并联一个外部齐纳二极管。在组装过程中,系统无法知道哪个电池单体第一个接触连接器,而且,这始终是一个随机事件,因此,每个电池单体上的齐纳二极管都要保护电池管理芯片。LE采用热插拔和稳健架构,工程师可以不用这些齐纳二极管,从而简化了印刷电路板布局,降低了总体成本。ADI12路电池监视器
据ADI
转载请注明地址:http://www.abmjc.com/zcmbzz/1861.html